Estrogen Receptor Alpha Represses Transcription of Early Target Genes via p300 and CtBP1, Stossi F, Madak-Erdogan Z, Katzenellenbogen BS, Molecular and Cellular Biology. 2009 Apr;29(7):1749-59

The regulation of gene expression by nuclear receptors controls the phenotypic properties and diverse biologies of target cells. In breast cancer cells, estrogen receptor alpha (ERalpha) is a master regulator of transcriptional stimulation and repression, yet the mechanisms by which agonist-bound ERalpha elicits repression are poorly understood. We analyzed early estrogen-repressed genes and found that ERalpha is recruited to ERalpha binding sites of these genes, albeit more transiently and less efficiently than for estrogen-stimulated genes. Of multiple cofactors studied, only p300 was recruited to ERalpha binding sites of repressed genes, and its knockdown prevented estrogen-mediated gene repression. Because p300 is involved in transcription initiation, we tested whether ERalpha might be trying to stimulate transcription at repressed genes, with ultimately failure and a shift to a repressive program. We found that estrogen increases transcription in a rapid but transient manner at early estrogen-repressed genes but that this is followed by recruitment of the corepressor CtBP1, a p300-interacting partner that plays an essential role in the repressive process. Thus, at early estrogen-repressed genes, ERalpha initiates transient stimulation of transcription but fails to maintain the transcriptional process observed at estrogen-stimulated genes; rather, it uses p300 to recruit CtBP1-containing complexes, eliciting chromatin modifications that lead to transcriptional repression. PMID:19188451

Nuclear and Extranuclear Pathway Inputs in the Regulation of Global Gene Expression by Estrogen Receptors, Madak-Erdogan Z, Kieser KJ, Kim SH, Komm B, Katzenellenbogen JA, Katzenellenbogen BS,Molecular Endocrinology. 2008; 22 (9): 2116-2127

Whereas estrogens exert their effects by binding to nuclear estrogen receptors (ERs) and directly altering target gene transcription, they can also initiate extranuclear signaling through activation of kinase cascades. We have investigated the impact of estrogen-mediated extranuclear-initiated pathways on global gene expression by using estrogen-dendrimer conjugates (EDCs), which because of their charge and size remain outside the nucleus and can only initiate extranuclear signaling. Genome-wide cDNA microarray analysis of MCF-7 breast cancer cells identified a subset of 17beta-estradiol (E2)-regulated genes ( approximately 25%) as EDC responsive. The EDC and E2-elicited increases in gene expression were due to increases in gene transcription, as observed in nuclear run-on assays and RNA polymerase II recruitment and phosphorylation. Treatment with antiestrogen or ERalpha knockdown using small interfering RNA abolished EDC-mediated gene stimulation, whereas GPR30 knockdown or treatment with a GPR30-selective ligand was without effect, indicating ER as the mediator of these gene regulations. Inhibitors of MAPK kinase and c-Src suppressed both E2 and EDC stimulated gene expression. Of note, in chromatin immunoprecipitation assays, EDC was unable to recruit ERalpha to estrogen-responsive regions of regulated genes, whereas ERalpha recruitment by E2 was very effective. These findings suggest that other transcription factors or kinases that are downstream effectors of EDC-initiated extranuclear signaling cascades are recruited to regulatory regions of EDC-responsive genes in order to elicit gene stimulation. This study thus highlights the importance of inputs from both nuclear and extranuclear ER signaling pathways in regulating patterns of gene expression in breast cancer cells. PMID:18617595

Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic versus genomic pathways of estrogen action, Harrington WR, Kim SH, Funk CC, Madak-Erdogan Z, Schiff R, Katzenellenbogen JA, Katzenellenbogen BS, Molecular Endocrinology. 2006; 20(3):491-502.

Estrogenic hormones are classically thought to exert their effects by binding to nuclear estrogen receptors and altering target gene transcription, but estrogens can also have nongenomic effects through rapid activation of membrane-initiated kinase cascades. The development of ligands that selectively activate only the nongenomic pathways would provide useful tools to investigate the significance of these pathways. We have prepared large, abiotic, nondegradable poly(amido)amine dendrimer macromolecules that are conjugated to multiple estrogen molecules through chemically robust linkages. Because of their charge and size, these estrogen-dendrimer conjugates (EDCs) remain outside the nucleus. They stimulate ERK, Shc, and Src phosphorylation in MCF-7 breast cancer cells at low concentrations, yet they are very ineffective in stimulating transcription of endogenous estrogen target genes, being approximately 10,000-fold less potent than estradiol in genomic actions. In contrast to estradiol, EDC was not effective in stimulating breast cancer cell proliferation. Because these EDC ligands activate nongenomic activity at concentrations at which they do not alter the transcription of estrogen target genes, they should be useful in studying extranuclear initiated pathways of estrogen action in a variety of target cells. PMID:16306086